Definite Descriptions and Dijkstra's Odd Powers of Odd Integers Problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definite Descriptions and Dijkstra's Odd Powers of Odd Integers Problem

The use of Frege-Russell style definite descriptions for giving meaning to functions has been long established and we investigate their use in the development of Functional Programs and from these to the development of correct imperative programs. In particular, we investigate the development of a functional program for a problem, "Odd powers of odd integers", discussed by Dijsktra. If the corr...

متن کامل

Explicit Polynomial for Sums of Powers of Odd Integers

In this note we derive the explicit, non-recursive form of the coefficients of the polynomial associated with the sums of powers of the first n odd integers. As a by-product, we deduce a couple of new identities involving the Bernoulli numbers. Mathematics Subject Classification: 11B57, 11C08, 11B68

متن کامل

Factoring Odd Integers without Multiplication and Division

A method of determining two factors of an odd integer without need of multiplication or division operation in iterative portion of computation is presented. It is feasible for an implementing algorithm to use only integer addition and subtraction throughout. Presentation of material is non-theoretical; intended to be accessible to a broader audience of non academic and theoretical practitioners.

متن کامل

Covers of the Integers with Odd Moduli

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 ± p w...

متن کامل

Quadratic Forms Representing All Odd Positive Integers

We consider the problem of classifying all positive-definite integer-valued quadratic forms that represent all positive odd integers. Kaplansky considered this problem for ternary forms, giving a list of 23 candidates, and proving that 19 of those represent all positive odds. (Jagy later dealt with a 20th candidate.) Assuming that the remaining three forms represent all positive odds, we prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Theoretical Computer Science

سال: 2009

ISSN: 1571-0661

DOI: 10.1016/j.entcs.2008.12.068